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ABSTRACT

This chapter reviews the ability of the emerging human performance
modeling technologies to support the design and operation of complex
systems. The ability of existing technologies to meet current application
needs is analyzed, and the results are then used to assess the areas where
additional research and development is most needed. Following a brief
history of human performance modeling, a taxonomy of models and
modeling techniques is established, as a framework for remaining
discussion. The human performance modeling technology base is
separately analyzed for its ability to support system design processing and
to support system operation. The system design process analysis considers
the various roles that human performance models may play during that
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process, ranging from generating design concepts to affording simulation-
based design evaluation. The system operation analysis also assesses a
range of roles, from training to performance support to automation. These
analyses demonstrate that human modeling technology has reached a
sufficient state of maturity that has become a proven contributor of the
complex systems engineering process. Challenges for further high-payoff
research are also presented, in five categories: cognition, knowledge
management, team and organizational structure and processes, predictive
models of training, and human-centered systems engineering.

INTRODUCTION

A continuing activity in behavioral and social science research has been
constructing models as a means of formalizing, integrating, testing, and even
developing theory. In recent years, this avenue of research has been very active,
with substantial advances in the development of computer models of human
thought and behavior (see Pew & Mavor, 1998). This research has begun to fuel
speculation that the human modeling endeavor may have progressed to the
point that the current generation of models could have immediate or near-term
engineering application.

At the same time, both industry and the government (particularly the
military) are facing challenges that are driving the need for human performance
models. For example, DoD is requiring that future Navy ships must be built
with reduced budgets and operated by vastly smaller crews, and must operate
effectively and efficiently in mission environments that are complex, difficult to
define, and rapidly changing. Thus, the human component is, more than ever,
the critical component to mission success. Moreover, the sheer size and scale
of complex systems such as ships (or factories, or aircraft, etc.) severely limits
the opportunity for traditional experimental approaches. It is simply too costly
and time consuming to build physical prototypes (or even effective mock-ups)
and then empirically assess their impact on human performance. In this
context, the techniques of human modeling and simulation provide perhaps the
only viable option. They hold the promise of providing powerful new means to
design, evaluate and operate modern ship systems to meet, accommodate, and
enhance human abilities, if the technology exists to model them appropriately
and effectively. Recent successes, such as the use of human performance
models in embedded Naval training (see Zachary, Bilazarian, Burns & Cannon-
Bowers, 1997; Zachary, Cannon-Bowers, Burns, Bilazarian & Krecker, 1998)
and in support of large scale training exercises (see Laird, Coulter, Jones,
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Kenny, Koss & Nielsen, 1997), suggest that the technology may now be ready
to be used in this manner.

The purpose of this chapter is to assess the ability of the state-of-the-art in
modeling technology to solve pressing problems in the engineering of complex
systems. On the one hand, we seek to identify the ‘low hanging fruit’ – obvious
and immediate applications of human modeling technology. On the other hand,
we seek to identify areas where additional research and development is needed,
and from those to identify areas that have a high payoff potential.

The remainder of the introduction briefly establishes an historical context of
human performance modeling research. The second section creates a taxonomy
of modeling technologies, which will be used throughout the rest of the chapter.
The third section focuses on the application of human modeling techniques to
support the design and evaluation of a complex system. Specifically, the section
addresses both how human models could be incorporated to support the
relatively common practice of simulation-based design evaluation, and how
human modeling technologies might be applied to support the generation of
design concepts. The validation and maturity of the human performance
models themselves are also discussed in this section. However, these are large
topics in there own right, and a full discussion is beyond the scope of this
chapter. The fourth section focuses on the application of human modeling
techniques to support the operation of complex systems. These applications
typically involve embedding the model(s) in the operational system to provide
support for activities such as decision-making, embedded training, and task or
workload management. The final section summarizes the current capabilities
and highlights and identifies the needs and opportunities for longer-term
research, based on potential application payoff.

Historical Development and Application of Human Modeling

While work on computer simulation techniques did not begin until the
emergence of commercial computers in the 1950s, many of the basic
quantitative models of human performance used in those simulations were
actually developed much earlier, often in university research laboratories.
Modern techniques for the analysis and modeling of cognitive performance can
be traced back at least to the seminal work of Donders in the Netherlands in the
mid-19th century. Current models for basic processes in visual and auditory
perception can be related back to the late 19th century research of Helmholz,
Hering, Weber, and Fechner. Work from the early part of this century on the
dynamics of eye movements (Dodge & Cline, 1901) and hand movements
(Brown & Slater-Hammel, 1949) continues to be relevant in contemporary
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models. Indeed, a very large literature has developed on models for many
distinct aspects of human performance, ranging from basic features of
sensation, through many kinds of perception, motor activity, information
processing, and decision making. Fortunately, recent efforts have also
addressed the compilation and indexing of information about this rapidly
growing body of human performance models (e.g. Boff, Kaufman & Thomas,
1986).

Individual Level Human Performance Model

Formulation of the first computer simulations of human performance began in
the late 1950s along two very different tracks. Beginning in the late 1950s was
the work of Siegel and Wolf (1962, 1969) to construct computer simulations of
the performance of individuals and teams in operating complex military
systems. The Siegel-Wolf models represent the first of the class of task network
models that describe the dynamics of task performance in terms of the
sequence and timing of subtasks. This approach was later translated into a
general purpose modeling tool for the Air Force in the form of a modeling
system designated as SAINT (Systems Analysis of Integrated Networks of
Tasks), which was subsequently adapted for micro-computer use and
commercially distributed under the name MicroSAINT (Laughery, 1998).
These task network models have been applied in the analysis of a large number
and variety of contexts and have been shown to provide a very efficient means
for simulating such large, complex systems.

Around the same time, Allen Newell and his colleagues at Carnegie-Mellon
University were taking a different approach to understanding and modeling
human performance, beginning with the concepts of the logic theory machine
and the general problem solver and leading through the mainstream
development of artificial intelligence and cognitive modeling to the current
GOMS (Card, Moran & Newell, 1983) and SOAR techniques. These models
and techniques focus heavily on describing how performance is derived from
knowledge, which in turn must be represented in fine detail in order to support
performance predictions.

Initially, a modeler had to choose between these two fundamentally different
approaches, with task network models requiring the user to provide estimates
for the times and accuracies of behaviors at the finest level of model
representation, and knowledge-based models affording the promise of
obtaining basic performance data from general perceptual, motor, and cognitive
models (Laughery & Corker, 1997). However, it wasn’t long before modelers
began to look for ways to integrate the two approaches. The first general
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purpose modeling tool which sought to integrate the task network and
knowledge-based features was the Navy’s Human Operator Simulator (HOS)
which was initially developed in the early 1970s (Lane, Strieb, Glenn &
Wherry, 1981). This tool provided a mechanism for representing the detailed
configuration of displays and controls in a crewstation, the task procedures by
which the user operates the crewstation, and the component “micro-models” by
which the human interacts with the displays, controls, and related informa-
tion.

SOAR was unveiled by Newell and colleagues in the mid-1980s (Laird,
Newell & Rosenbloom, 1987) as the first major offering of a general
architecture for human cognitive performance, promising to provide the
capability to represent the complete range of human behavior from a
knowledge-based perspective. In addition to representing both declarative and
procedural knowledge, SOAR also incorporates a learning mechanism based
on the use of various general problem-solving strategies and the “chunking” of
successful solutions. SOAR has been widely used in university laboratories
around the world and has recently been demonstrated in a large-scale
application for computer-generated forces (Laird, Coulter, Jones, Kenny, Koss
& Nielsen, 1997).

Since the emergence of SOAR, several other candidates have been developed
as general computational architectures for representation of human cognition,
such as ACT-R, EPIC, and COGNET. ACT-R was developed by Anderson
(1993) as a model for higher level cognition, such as in problem solving tasks,
with a principal focus on the investigation of mechanisms of learning. EPIC
was developed by Kieras and Meyer (1997) to provide a detailed representation
of how human task performance is dictated by the constraints imposed by
perceptual, motor, and cognitive abilities, with special emphasis on defining
how perceptual and motor activities interweave with other aspects of cognition.
COGNET was developed by Zachary and colleagues (Zachary, Ryder, Ross &
Weiland, 1992; Zachary, Le Mentec & Ryder, 1996) as a model of expert-level
problem solving and task performance in real time, multiple-task environ-
ments. Pew and Mavor (1998) reviewed ACT-R, COGNET, EPIC, MicroSaint,
SOAR, and several other integrative modeling architectures in detail, in the
context of military simulations of human behavior.

Group and Team Level Human Performance Models

In addition to these general models and architectures for individual human
cognition and performance, other types of models represent and study the
performance of multiple individuals operating as teams or larger organizations.
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Unlike the psychological models, which have focused on individual cognitive
and behavioral processes, these social science models have tended to focus on
the structure of human interactions and social systems. Whereas individual-
level models have focused on processes, these group and team models have
been primarily concerned with the role of constraints and structure on
processes, rather than on underlying mechanisms. However, similar to the
psychologically based individual-level models, the team and organizational
models of current interest also come (primarily) from two distinct lines of
research, which can be termed the micro and macro approaches.

The micro approaches focus on modeling interaction upward from the
(atomic) level of the individual dyadic relationships. This work has been
heavily mathematical and influenced by the early work of Harrary, White and
others who employed the mathematics of graph theory as a framework for
modeling the networks of relationships among people. During the 1960s and
1970s, very sophisticated models were derived from this “social network as
graph” simile, (e.g. see White, Boorman and Breiger, 1976, or Zachary, 1977,
for very different network modeling approaches), among others. This research
showed how the collection of individual dyads that makes up teams, groups,
and organizations has a deep structure that could often be seen to have clear
effects (or at least reflections) in the activities and processes that occurred
within these social units. At the same time, it became increasingly clear that
collection of the data on individual dyads was a costly and time-consuming
process, and a series of experimental studies, termed the “informant accuracy
studies”, demonstrated the difficulties in measuring the dyadic structure of
social networks on an indirect (i.e. non-observational) basis.2 These measure-
ment and data collection problems have continued to hamper broader
development and application of the field to the present day.

The macro approach focuses on broader processes in social groups,
particularly large social units such as organizations, cities, societies, etc.,
without reference to individuals and/or their unitary dyadic relationships. This
tradition achieved prominence with the work of Jay Forrester at MIT (Forrester,
1971) and the Club of Rome (Meadows, Meadows, Randers & Behrens, 1972),
who began to model the behavior of complex systems as the dynamic
interactions of multiple complex sets of constraints and underlying relation-
ships. Formulated as systems of difference and/or differential equations, the
resulting system dynamics were instrumental in demonstrating how underlying
relationships had long-lasting and subtle effects on the long-term behavior of
the larger systems. Just as the micromodels of group structure showed how the
pattern or relationships in a network led to higher level structures and
constrained group processes, the dynamic models of the macromodelers
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demonstrated how a constant set of underlying relationships could give rise to
a broad range of complex and varying processes through time.

A third, and now dominant, approach has arisen from a combination of the
micro and macro approaches (see Pew & Mavor, 1998: Chapter 10 for a more
detailed review). In this approach, which can be termed the agent-based
approach, the individuals within a team or organization are represented in
simplified fashion as agents, interconnected by networks of command, control,
and communication relationships. Typically, both the agents and the network in
which they are embedded are dynamic, leading both to learning and
organizational changes over time.3 A critical issue in this approach is the degree
of cognitive sophistication given to the agents, and the degree of organizational
sophistication of the network in which they are embedded.

Use of Human Models in System Engineering

Just as the research into modeling human behavior is not new, the current
attempts to apply human models to complex systems engineering are not the
first of their kind either. In the early 1970s, for example, the Navy initiated the
CAFES (Computer Aided Function Evaluation Systems) program to develop
simulation-based tools for assessment of workload, function allocation, and
anthropometric accommodation in aircraft cockpits (Hutchins, 1974). This was
followed by the Air Force CADET (Computer Aided Design and Evaluation
Tools) program (Connelly, 1984) and then another larger scale Air Force
program on Cockpit Automation Technology (CAT) (McNeese, Warren &
Woodson, 1985). In the mid 1980s, the Army began the development of a
collection of simulation-based tools to support the methods of the MANPRINT
program, since designated as the HARDMAN-III tools (see Risser & Berger,
1984). At about the same time, the Navy started the Advanced Technology
Crew Station (ATCS) program to develop and demonstrate the use of
simulation and computer-based tools in design and development of new aircraft
cockpits. More recent programs in this vein include the Air Force’s OASIS
program and NASA’s MIDAS program. And there have been several systematic
reviews and conferences in this area over the past few decades (e.g. Moraal &
Kraiss, 1981; McMillan, Beevis, Salas, Strub, Sutton & Van Breda, 1989;
Elkind, Card, Hochberg & Huey, 1990; Baron, Kruser & Huey, 1990). Of
course, the technologies of human performance modeling and simulation are
not stationary targets, and their rapid development over recent years warrant
periodic reexamination of status and development needs.

In general, these DoD programs did not develop the basic human
performance models, but rather sought to adapt existing models and techniques
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in order to produce practical tools to aid system designers and developers. For
example, several of the Army’s HARDMAN-III tools used the same basic
human performance model (variants of MicroSAINT) for distinct applications
to determine system performance requirements, to evaluate workload for a
team of system operators, and to assess the effects of individual differences.
While these and other programs were successful at applying human
performance models to some specific ‘target’ system or concept, they have, so
far, failed at the more global task of making human modeling an accepted and
standard component of complex systems engineering within DoD.

THE TECHNOLOGY BASE

Human cognition and behavior are modeled through a variety of approaches
and technologies. Some of these focus on individual components of human
performance (e.g. models of visual target detection), while others focus on the
integration of components at the architectural level (e.g. executable cognitive
architectures). The various ways in which human models can be used in
complex systems design, evaluation and operation do not inherently favor
either component or integrative approaches. For example, in designing a sensor
display to optimize human target detection, a model of visual detection may be
completely sufficient. A more integrative model that included anthropometry,
auditory processing, cognitive planning, and problem solving, etc., might well
be ‘overkill’ and too cumbersome to justify its use. On the other hand,
applications such as large-scale system simulation or distributed training
exercises may require highly integrated modeling approaches. To facilitate a
more systematic mapping of the human modeling technology base onto the
various opportunities and requirements in the complex systems domain, a
simple taxonomy of the existing technology base is presented below.

The taxonomy uses two broad groupings – models and modeling techniques.
Models includes complete formulations (or families of them) that attempt to
describe, predict, or prescribe aspects of human competence or performance,
either component-wise or integrative. Modeling techniques includes computa-
tion, mathematical, or methodological formulations that have been used to
build models of human competence/performance or to apply human models to
system design, operation, or evaluation problems. They differ from the first
grouping in that modeling techniques are more general purpose tools for
modeling (in mathematics, physics, computer science, etc.) that have been
sometimes used to represent human cognition or behavior. These modeling
techniques do not embody specific psychological or sociological theories, nor
were they developed specifically for the purpose of human modeling.
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Following the discussion of the various categories of models and modeling
techniques, the next sections will consider the use of this human modeling
technology in the complex system design/evaluation process, and in the
complex system operation process.

Classes of Human Models

Human models, as defined, may be classified into 18 categories, which span the
range from highly specialized component models (e.g. perceptual models) to
highly integrative representations (e.g. computational cognitive models). These
categories are (in alphabetical order):

(1) Closed form component models. Self-contained mathematical formula-
tions that represent some component aspect of human performance as a
self-contained closed form mathematical relationship rather than any
common application or set of underlying terms. Fitts’ Law (Fitts &
Peterson, 1964) is a classical example of this type of model.

(2) Computational cognitive models. Integrative models of human cognition,
perception, sensation, motor action and knowledge that embody a
principled underlying theory or framework for human information
processing. This class includes items such as ACT-R (Anderson, 1993),
COGNET (Zachary, Le Mentec & Ryder 1996), EPIC (Kieras & Meyer,
1997), and SOAR (Laird, Newell, and Rosenbloom, 1987), among others.
These models capture human knowledge in a symbolic form and allow
behavior and cognition to be generated as a result of a symbolic
computation process.

(3) Critical decision models. Domain-specific models that capture and
represent the logic and situational relationships that underlie decision-
making in that specific domain (Klein, Calderwood & MacGregor, 1989).
These descriptive models typically focus on extracting knowledge from
expert decision-makers and representing it in a combined prose/graphical
notation.

(4) Decision theory models. A broad family of normative models that
represent human behavior in choice-among-alternatives situations. Gen-
erally drawing on the terms of game theory (Von Neuman & Morgenstern,
1947), the choice process is represented in terms of outcomes, outcome-
utilities, and underlying distributions of input states, together with
varying parameters that include factors such as subjective value, risk, and
risk preference, etc.
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(5) Finite state models. A computational framework for relating inputs to
behaviors using the notions of internal information states and the
mathematics of finite state automata.

(6) GOMS (Goals, Operators, Methods, Selection Rules). Domain-specific
models of the knowledge used in human-computer interaction that are
developed using a notation created originally by Card, Moran and Newell
(1983). GOMS models decompose primarily procedural knowledge into
goal hierarchies, which are conditionally related to states of the
interactive process and interface.

(7) Group Training Models. Team-level representations that could either
relate collective (i.e. team) training to performance or to models that
relate performance to training requirements.

(8) Human reliability analysis. Various models for estimating the likelihood
of errors occurring on complex tasks as a function of elemental task error
probabilities and other factors. These techniques are used, for example, to
estimate the impact of human errors on system performance and to
evaluate system designs and recommend improvements (Czaja, 1997).

(9) Link models of anthropometry and movement. Numerical/graphical
models that represent the human body and its capability for movement
and vision through an articulated set of ‘links’ which themselves
represent lower-level body components (e.g. fingers, arms, torso, etc.). In
the most sophisticated of these models, the links are represented not as
simple lines but rather as complexly-interrelated solids.

(10) Network models. Models in which individuals, teams, groups, and/or
organizations are represented as nodes and their dyadic relationships as
links in a graph-theoretic mathematical representation. The degree of
complexity in the dyadic representation varies greatly, and the mathe-
matics often make recourse to higher-level systems computed on the raw
graphs.

(11) Optimal control models. Mathematical/computational representation of
decision making and/or adaptive behavior in an uncertain environment,
based on the underlying mathematics of optimal control theory (Kalman,
Falb & Arbib, 1969). These models include an internal model of the
external world which is used to select behavior in the world based on
current input, current output, current internal state, and various filters.

(12) Perceptual models. Various descriptions of sensation and perception for
any of the human sense modalities, though primarily for vision and
hearing. The possibilities range from models for detection of simple
stimuli, through interpretation of complex patterns.
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(13) Recognition Primed Decision Making (RPD). Models of domain-specific
expert human decision making that are developed using an underlying
RPD framework. This framework asserts that decisions emerge from an
(implicit or explicit) situation assessment process that maps situational
features and understanding onto appropriate decision-options. Developed
by Klein (1989), the RPD framework is related to more general modeling
techniques of case-based reasoning.

(14) Signal Detection Theory. Models for determining the probability of
detection of a stimulus (which may be very simple or quite complex)
based on the assumption that the signal (i.e. stimulus) and the background
noise can each be characterized by normal distributions along relevant
psychological dimensions (Green & Swets, 1966).

(15) Task Hierarchies. Domain-specific models of task performance achieved
through a conventional task analysis that simply decomposes a job into a
hierarchy of tasks and subtasks.

(16) Task networks. Domain-specific or job-specific models which decompose
human activity in the domain or job into a series of interconnected tasks,
where tasks are represented as transformations of some state/variable
vector, and task-connections represented as potential task transitions,
often conditioned by probabilistic factors. Originating from the SAINT
methodology (Wortman, Duket, Seifert, Hann & Chubb, 1978) the
network is often used to simulate the behavior of the system as well.

(17) Training taxonomy. A structural model of generic tasks in terms of the
underlying skill requirements so as to support analyses of training effects
on skill retention and, hence, task performance (see Swezey & Llaneras,
1997).

(18) Workload Models. Models which represent residual human work or
information processing capability in specific context. Typically workload
models are based on an underling theory, such as Wicken’s (1980)
Multiple Resource Theory which represents information processing and
capacity as the result of interactions among multiple lower-level
capabilities or resources.

These eighteen categories represent only broad classes of human models, and
even then only a subset of human models that appear particularly relevant to the
complex system design and operation problems. The functional definition of
the classes allows many vastly different models to be included within a given
class.

Regardless of the class to which a model belongs, however, it can be
described along four key dimensions:
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(1) Model goals. Models that attempt to describe the regularities of human
behavior or cognition within a specific setting that are captured in
empirical data are called descriptive models. Other models, called
predictive models, attempt to predict human behavior/cognition in a range
of (future or hypothetical) situations described in terms of empirical data.
Finally, there are prescriptive models which attempt to prescribe what a
person should do/think in a given (future or hypothetical) situation.

(2) Architectural focus. A given model may focus on individual architectural
aspects of human capabilities and behavior, including: (a) the character-
istics of the physical body and the ability of the body to move and act in
a given physical environment, (b) the processes of registering information
from the external environment (sensation) and/or internalizing registered
information into a form/representation used for internal information
processing (perception), (c) the representation of information in the mind
and the process of manipulating that information to yield complex
behaviors such as reasoning, decision-making, or planning (information
processing), or (d) the process by which the person acquires information
and knowledge about the external world and external processes, and
internalizes this information and knowledge on a long-term basis for use in
future information processing (learning). There are also integrative
models, which attempt to integrate all of multiple components into a single
model of human cognition and behavior.

(3) Predictive focus. Those models that seek to predict human behavior can
differ on the aspects of human capability that they seek to predict. The
most basic kind of predictive focus is on the outcome, or specific behaviors
that a person will take and the outcomes of those behaviors in a given
scenario or situation. There are also time-based models, which seek to
predict the time it takes for activities and/or actions to be performed, and
accuracy-based models, which seek to predict the accuracy with which
activities and/or actions will be performed. Workload models seek to
predict the workload, either total or by-component, associated with
performing specific actions and/or activities. Some models seek to predict
the situation awareness that a person will have of the internal and external
situation at a specific point in a specific scenario. Finally, some models
may attempt to predict the internal structure or organization of an activity
or process.

(4) Level of modeling. Finally, models can address different levels of human
activity, either the individual level, or the organizational level, which is
taken here to include models of dyads, teams, organizations, etc. (any unit
above the individual level).
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There are other possible dimensions along which models could be compared,
but these four are discussed here because they are relevant for the issues and
assessments made in later application sections of this chapter. Table 1 shows
the eighteen model categories evaluated on their ability to support the
construction of models with different values along these four dimensions.

Technology Maturity

The range of human modeling technology discussed above is broad. These
various technologies are not at the same stage of development, nor are they at
the same point of readiness for practical application to complex systems
engineering. Model maturity can be rated according to three categories:

• Applicable Now – the modeling type/technique has been used successfully or
is judged to offer sufficient potential for successful application to some
aspect of system design today.

• Applicable in the Short term – the modeling type/technique is at a state
where several years of focused research and development coupled with
supporting model validation research would probably make it applicable to
system design.

• Applicable in the Long term – the technique, while offering promise, is not
yet at a state of maturity where a usable, practical technique can be
envisioned, but the technique still merits further research and development.

In general, all the model classes listed in Table 1 are applicable now, with two
exceptions. Both Group Training Models and Training Taxonomies are in early
stages of development and are applicable only in the long term. Also,
Computational Cognitive Models are rapidly evolving, and substantial new
capabilities are likely to be available in the short term.

Validation of Human Models

In various engineering communities, there are standards and processes for
model verification, validation, and accreditation. Of course, the behavioral
sciences community has independently established its own expectations as to
what is meant by the term validity. These communities have not been well
coordinated, and a plan for assessing human performance model validity that
addresses concerns of both communities is an immediate concern.

Before any model can be used for engineering decision making, the model’s
validity and utility must be established. Three general criteria are commonly
used to assess the validity of a given human model. Predictive/concurrent
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Table 1. Model Classes Rated on Key Comparative Dimensions.

Model Class Goals Architectural
Focus

Predictive
Focus

Level

Closed form component models (e.g. Fitts’
Law)

descriptive,
predictive

various outcome, time,
accuracy

both

Computational cognitive models descriptive,
prescriptive,
predictive

integrative outcome, time,
accuracy, situation
awareness, workload

individual

Critical decision models descriptive information
processing

outcome, situation
awareness

individual

Decision theory models descriptive,
prescriptive

information
processing

outcome individual

Finite state models descriptive,
predictive

integrative outcome, time,
situation awareness

individual

GOMS descriptive,
prescriptive,
predictive

information
processing

outcome individual

Group training models descriptive learning/training outcome organizational
Human reliability analysis (HRA) descriptive,

predictive
physical, perception time, accuracy individual

Link models of anthropometry & movement descriptive,
predictive

physical outcome individual

Network models descriptive integrative outcome, structure organizational
Optimal control models descriptive,

predictive
integrative outcome, time,

accuracy, situation
awareness

individual

Perceptual models descriptive,
predictive

perception outcome individual
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Table 1. Continued.

Recognition Primed Decision-making (RPD) descriptive,
predictive

information
processing

outcome, situation
awareness

individual

Signal Detection Theory descriptive,
predictive

perception. outcome individual

Task hierarchies descriptive,
prescriptive

behavior process individual

Task network descriptive,
predictive

behavior outcome, time,
accuracy, situation
awareness, workload

both

Training taxonomy prescriptive learning/training structure individual
Workload descriptive,

predictive
information
processing

workload individual
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validation is established by comparing the predictions of the model to actual
performance data. Construct validation is established by demonstrating that the
underlying constructs and model components are valid. Face validation is
established by submitting the model for review by experts to assess apparent
validity. These three types of validation are presented in the order of the power
of the statement of validation (predictive validation makes a much stronger
argument than face validation). This typically also translates into cost (e.g.
predictive validation studies involving sufficient numbers and types of subjects
will be far more expensive than the less-strong face validation studies).

Table 2 presents a summary of the types of validation studies that have been
conducted for the human performance modeling types introduced earlier in this
section. There is one important caveat regarding Table 2. The entries in the
table reflect not that the modeling approach (e.g. task network modeling) has
been validated, but rather that models built of specific systems using this
approach have been validated. Overall approaches can not be validated per se
except to the extent that the underlying scientific theory they embody or
formalize can be validated. Validating a particular model (application)

Table 2. Estimated Level of Validation Studies on Model Types.

Modeling Class Validation Studies Conducted

Closed form component models (e.g. Fitts’ Law)* Face/construct/predictive
Computational cognitive models* Face/construct/predictive
Critical decision models Face
Decision theory models† Face/construct/predictive
Finite state models Face/construct/predictive
GOMS* Face/construct/predictive
Group training models Face
Human Reliability Analysis Face/construct
Link models of anthropometry & movement Face/construct/predictive
Network models* Face/construct/predictive
Optimal Control Models Face/construct/predictive
Perceptual Models Face/construct/predictive
Recognition Primed Decision-making (RPD)* Face/construct/predictive
Signal Detection Theory Face/construct/predictive
Task hierarchies* Face
Task network* Face/construct/predictive
Training Taxonomy Face
Workload* Face/construct/predictive

* Varies with individual model in this class. † Models in this class have been shown to have very
constrained prediction validity
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example, on the other hand, is more constrained and more possible. At the same
time, if a model type or approach has been demonstrated to be valid in specific
applications, it is easier to make the argument for its validity in other
applications.

While the goal of validating human performance models by predictive
validation (the highest standard, as noted above) is commendable, this is a high
and often unachievable goal. Human performance is inherently variable which
means to get stable measures of performance against which to compare model
predictions requires large numbers of subjects. Also, human performance
research in complex systems is expensive and, particularly for evolving
systems, often impossible. It is therefore the case that lower standards than
predictive validity may be adequate. In fact, typical military verification,
validation, and accreditation (VV&A) does not consistently require predictive
validity as part of the validation process. In addition, it is probably the case that
different model types may have different requirements. For example, models
such as anthropometric or perceptual models may require predictive validity to
be established (in either a general or situation-specific context) before they can
be reasonably used in system validation, while for other model types
(particularly those that are highly descriptive, such as Critical Decision
Analysis, GOMS, task network representation) the concept of predictive
validation may be less meaningful and not required.

In a broader context, however, the assessment of model validity is in fact
subject to different standards and processes. Specifically, academic and
scientific research utilizes one set of principles and standards for establishing
the validity of models, particularly as embodiments of scientific theory, while
engineers and simulation analysts, particularly in the military, have very
different processes for VV&A of models for use in military analysis. In the
narrow sense of specific models being used in engineering applications, it is
reasonable that established requirements of the military VV&A process should
form a sufficient test of validity in most cases (subject to the arguments
discussed in the preceding paragraph). This suggests that the human
performance modeling and systems engineering communities rely on construct
and face validation where these may be sufficient conditions. This will allow
experience to be gained in using the models to build actual systems and will
ultimately lead to empirical usage data that can be used to compare model-
based predictions to actual outcomes, and thus lay the foundation for broader
predictive validation.

Finally, model usefulness should be considered as relevant to model validity.
Four dimensions related to model usefulness can be identified. First, essential
to any determination of a model’s utility is defining when the model is
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appropriate and, by inference, when it is not. Factors to be considered include
the underlying assumptions and the situations under which the assumptions are
met (for example, a visual model may assume high levels of ambient light,
making it inapplicable in dimly lit or night-vision situations), the type of
human performance outputs predicted by a model (e.g. models that do not
predict performance time would be inappropriate for evaluating data through-
put rates), and known limitations from prior validation studies. Models with
well-defined boundaries will be more useful because their applicability will be
easier to assess. Second, for a human performance modeling tool to be useful,
it must be usable. During the assessment of model usefulness for a purpose, one
must consider what is required of the target user in order for the tool to be
usable. A modeling tool that takes months to use when only weeks are available
is not useful when there are severe schedule constraints. A modeling tool that
requires several years of education or can only be used by highly specialized
people is limited to applications where there is a high potential payoff.

In addition to being usable, a model (or just the use of modeling) may add
value beyond the narrow confines of the modeling application. For example,
the analysis required to build the model may lead to other engineering, design,
or conceptual insights, or results that have nothing to do with the actual model
application. This kind of “value added” contributes to a model’s overall
usefulness. Finally, an increasingly important component of model usefulness
is its interoperability, or the extent to which the model can be linked to other
models of hardware, software, and even other types of human performance
models. The easier it will be to get a human model into an integrated modeling
environment, the more useful the model will be.

Relevant Modeling Techniques

The state of the art of human modeling has certainly not progressed to the point
that there is a well-defined collection of models that can be used in all
commonly occurring situations. There are still many cases where a human
model has to be cobbled together ad hoc from lower-level building blocks for
a specific, unique situation. A number of these “building blocks”, or modeling
techniques, are presented below and discussed in terms of five high-level
categories, as shown in Table 3.

Knowledge Representation Techniques are methods that have been devel-
oped, typically in artificial intelligence and cognitive science, to capture and
represent human knowledge in symbolic form for use by computational models
of reasoning and problem solving. Three commonly used techniques for
knowledge representation include blackboards (Carver & Lesser, 1994),
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production rules (Anderson, 1976) and semantic nets (Collins & Quillian,
1969). Blackboards are hierarchical representations of primarily declarative
knowledge that are used in opportunistic reasoning and open problem solving
systems. Production rules, on the other hand, are abstracted representations of
atomic if/then propositions, which can be applied inductively and deductively
to specific sets of facts to yield new facts and inferences. This is the form of
representation typically used in expert systems. Finally, semantic nets are
representations of facts and the semantic relationships among them (e.g. ‘part
of’, ‘kind of’, and other more domain-specific forms), typically developed
using graph representations.

Reasoning Techniques are methods that have been developed to allow the
computational representation of problem-solving, planning, decision-making
or other reasoning processes. These methods were not developed as models of
human performance per se, but have sometimes been used to develop human
cognitive/behavioral models. Commonly used techniques include Bayesian
inference, fuzzy logic, neural networks, hidden Markov models and case based
reasoning. Bayesian inference techniques are mathematical and computational
methods to permit reasoning about uncertainty based on the underpinning of
Bayes rule (that the probabilities of all disjoint events sum to unity). A

Table 3. Modeling Techniques Applicable to Human Model Development.

Modeling Function Modeling Technique

Knowledge Representation Blackboards
Production Rules
Semantic Nets

Decision Making and Reasoning Bayesian Inference
Fuzzy Logic
Hybrid Logic
Neural Nets
Hidden Markov Models
Case-based Reasoning

Design/Analysis Techniques Early comparability analysis
Simulation-based tutoring and authoring
Simulation based walk-through
Statistical models (descriptive)
Statistical models (interpretive)

Natural Language Processing Techniques (various methods)
General Purpose Simulation Monte-Carlo methods

Dynamical models
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particular manipulation of Bayes formula for conditional probability is of
particular importance, as it allows reasoning about sequences of discrete events
(i.e. data) in which (prior) estimates of underlying distributions are updated
following each observed event (to yield a posterior distribution). This process
has been used to model diagnostic inference processes. Fuzzy logic techniques,
on the other hand, are mathematical and computational methods to permit
reasoning about uncertainty without requiring the mathematical constraint of
Bayes rule. Originally developed by Zadeh (1965) as an artificial intelligence
method, it has been offered as an alternative (i.e. non-Bayesian) way of
modeling human reasoning and decision-making under uncertainty. (Note:
there are methods that incorporate multiple aspects of logic and both Bayesian
and non-Bayesian inference methods into a single framework, and these are
typically called hybrid logic approaches.) Neural nets are methods that
simulate the processing of information by a distributed and highly intercon-
nected network of (typically simulated) simple information processing devices
analogous to individual neurons (see Rumelhart, McClelland et al., 1986).
Hidden Markov models are processing algorithms, often used in language
processing models, that provide discrete stochastic state-based representations
of sequential relationships (i.e. Markov models) organized in a hierarchical
manner, so that what appear to be states at one level are actually complete
Markov processing models at a lower level of detail. Finally, case based
reasoning methods categorize problem solving processes into alternative
strategies that are indexed by archetypal examples called ‘cases’, and allow
individual problem-solving examples to be mapped into appropriate problem-
solving processes according to their similarity to the various case archetypes.

Design/Analysis Techniques are methods that have been developed to
support the process of designing systems or components of systems. In many
cases, though not all, these techniques either can interface with models of
humans or can produce situation-specific human models. For example, one
standard engineering technique, early comparability analysis, is a method in
which design situations or design candidates are compared with other existing
implemented systems or subsystems as a basis for estimating characteristics
such as manning requirements, training requirements, complexity, etc. Another
common technique, simulation can be used in a number of ways, including
simulation based tutoring and authoring, a method by which rapidly
constructed simulations are used to capture procedural knowledge and support
the interactive tutoring of novices in those procedures. Simulation based walk-
through is a method in which a simulation of a system or system design is used
as a basis for visualizing or ‘walking through’ that design, which is typically
used in conjunction with virtual prototyping technology that provides the high-
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fidelity simulation of the system. Finally, there are a series of classical,
statistical methods which either describe the characteristics of specific
populations in terms of distributions of random variables (descriptive), or
model the relationships among (interpretive) groups of independent or
interdependent random variables (e.g. among arm, leg, trunk length in
contributing to individual height in a human population).

Natural Language Processing Techniques are a family of primarily
computational techniques that model the human ability to process language in
written (i.e. text) form. These techniques can allow other types of human
models to interact with real humans in simulations or games, or can be used to
provide model users with natural language access to the functionality of other
models or techniques.

General purpose simulation methods are computer science and operations
research techniques that are used to simulate systems of all types, not just
human systems. Although there are many ways to categorize these methods,
Zachary (1986) uses two orthogonal dimensions (mechanical vs. analytical and
stochastic vs. deterministic) to create four categories. Mechanical methods are
those that decompose a process into discrete events and processes and
mechanistically simulate the system’s behavior in terms of those events and
processes. Often called discrete event simulation, mechanical models can be
either stochastic or deterministic in the way they process through the event/
process space. The class of human performance models termed “task networks”
represents the application of mechanistic simulation methods to human
modeling. Analytical methods are those that describe a system in terms of the
underlying relationships, typically expressed in mathematical terms, that
describe either input/output transformations or time-dependent relationships.
Dynamical models, on the other hand, are analytical models which represent
the changes in a system through time as a set of simultaneous differential
(continuous change) or difference (discrete change) equations which are
functions of time, or by dynamically interacting agents. These models can also
be either stochastic or deterministic, although deterministic representations are
more tractable and more common.

USING HUMAN MODELS IN SYSTEM DESIGN

Today, it is standard practice to use models of system hardware and software
during concept exploration, preliminary design, and full-scale engineering
development of a complex system. One of the functions of these models is to
ensure that the system performance objectives, whatever they may be, are
satisfied by the design. Additionally, the models ensure that the performance
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objectives are met within any defined design constraints, such as weight,
power-consumption, etc. This use of models reflects a (often implicit) focus on
the system sans humans, as if the human role was unimportant, imponderable,
or both. Increasingly, though, this view is being called into question, often as
the result of designs that have proven unusable, untrainable, or unstaffable. A
new view is emerging in which the performance of the integrated system –
hardware plus software plus people – is the explicit focus of performance
objectives. In other words, the human role is explicitly viewed as important and
even critical. And as the discussion above shows, the modeling of this human
role is certainly no longer imponderable; a wide range of models and modeling
tools exist. The question that arises, then, is what types of models should be
used for what purposes in the design process?

We begin with a brief overview of the design process for complex systems,
and from that discuss two major uses of human models  – one traditional, and
one non-traditional. The traditional application is the use of human models to
validate design concepts, by assessing whether explicit design concepts can
meet their performance requirements given the capabilities and limitations of
their human components. This is a traditional application because the human
model is used in exactly the same way that hardware and software models are
now used, and there is a growing history of success at using human
performance models in this way. The non-traditional application is the use of
human models to support the synthesis and concept generation activities
associated with the design process. This is a relatively new and somewhat
exploratory area of application for human performance models.

The Complex System Design Process

The design of complex systems is a main concern of the discipline of system
engineering. As any engineering discipline, it is the subject of ongoing
discussion, research, and debate. There are several standards produced by
various organizations, e.g. Institute of Electrical and Electronic Engineers
(IEEE Standard 1220–1998), International Committee of System Engineering
(INCOSE Systems Engineering Handbook), Government Electronic and
Information Technology Association (EIA standard 632), and the U.S.
Department of Defense (Directives 5000.1 and 5000.2-R), and competing
theories of how the process should be done (cf., Blanchard & Fabrycky, 1998).
Thus, there is no single commonly agreed standard for how a complex system
should be designed. Still, it is possible to identify the main features from most
commonly applied approaches, and distill them into an abstract representation
that can guide the consideration of where and how human models might fit in.

220 WAYNE ZACHARY ET AL.



Most approaches fall along a continuum from what is called ‘waterfall’ to
what is called ‘spiral’. Both processes proceed through a well-defined series of
stages, generating concepts, evaluating them, selecting the best, developing
detailed designs from it, and implementing and testing those designs. Waterfall
approaches tend to go through this process only one time, building
systematically from coarse granularity to fine granularity in the design and
implementation. Spiral approaches tend to proceed through the process many
times, each time creating a more-complete design or implementation,
correcting problems from past cycles, and adding new detail in areas previously
ignored. The core steps of both approaches can be seen in Fig. 1.

As a general overview, the system design process in Fig. 1 has three
fundamental stages. Initially, designers deal with mission analysis and
requirements analysis (WHY is this type of system needed?). Next, designers
deal with functional analysis and logical design (WHAT will the system have
to do?). Finally, designers deal with implementation details associated with a
particular design, such as allocating functions and resources (HOW will the
system accomplish that?). At each stage, there are two types of activities.
Design synthesis activities are the tasks a designer engages in to come up with
a potential requirement/logical design/detailed design. Design synthesis
typically involves a high degree of art and creativity. Design analysis activities
include systematic, thorough, and rigorous attempts to evaluate a potential
requirement/logical design/detailed design. The overall cycle can be iterative in
nature, as in a spiral process, or recursive as in a waterfall process, where

Fig. 1. Abstracted System Design Process.
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systems are broken into subsystems, which are broken into sub-subsystems,
etc. Information needs to roll up and down the hierarchy, explicitly identifying
the implications of a design implementation of a subsystem on a variety of
measures, including cost, impact on other subsystems, ability to meet the
mission needs, etc.

Of course, complex systems are rarely, if ever, built entirely de novo. Certain
components are typically adapted or incorporated from pre-existing systems on
a legacy basis, to limit the complexity of the design process and to limit the
developmental cost of the final system. The amount of novelty in the system
can and does vary, however, and this strongly affects the design process. In
general, a given design problem can also be seen as falling on a continuum
from evolutionary (involving an incremental moderate modification to an
existing system) to revolutionary (involving a total departure from the design of
existing systems). Few systems are totally revolutionary, as the cost of making
everything new is prohibitive, yet few are also totally evolutionary, as new
designs are rarely warranted without substantive change.

More revolutionary design problems, though, can lead to more open-ended
design processes. An interesting case in point is the Navy’s goal of a 70%
manning reduction on future Navy ships (Carnevale, Bost, Hamburger, Bush &
Malone, 1998). The realities of cost and financing dictate that it is not
pragmatically possible to start designing this ship with a totally clean sheet of
paper. The extreme requirement for manpower reduction, though, may require
a design that is “revolutionary” in that it includes all aspects of design –
function automation, consolidation, elimination, and simplification – and
considers a wide variety of factors including, but not limited to, human factors.
For example, improving the human-computer interface (HCI) of a system could
reduce manpower requirements by allowing fewer people to accomplish more
work. On the other hand, a better paint needs less repainting, which also
reduces manpower requirements. It is interesting to note the revolutionary
requirements may not be unidirectional. Achieving global manning reductions
on this future ship may not require proportional reductions in each area, and
may even require increasing manning in some areas. For example, as a
consequence of the increased automation during the ‘Smart Ship’ project, a
training department was added to the ship (see Giffen, 1997).

Revolutionary system requirements and design processes can also conflict
with the more traditional life-cycle model of complex systems, in which an
initial version is implemented and fielded, and then incrementally modified
over a long period of time. This process minimizes the marginal cost of any
modification, as (in theory) only the new functionality must be designed,
implemented and integrated, rather than a whole new system. However, it has
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some pernicious effects, particularly with regard to the role of human
components. Here again, ship design is a good example. Historically, a ship
was viewed as a collection of component systems “riding side-by-side” inside
a common hull. When a new weapon or sensor system was added to a ship, it
was added by an incremental modification process. The new hardware was
designed, squeezed onto the already crowded deck and/or hull, and a minimally
invasive ‘stovepipe’ was created to connect this new hardware with the people
who would run it and the other systems (power, data, etc.) that would supply
it. The result was that a new console, job function, etc. was created for each
new incremental component, which frequently required a new human role.
Over time, this stovepipe strategy exploded the complexity and manning
requirements of a ship, even though at each step it was the most efficient
alternative.

This has led to the concept of total system design, in which the
interconnections and ramifications of design decisions at all levels are taken
into account, not just the marginal effects. The whole system (in this case the
ship) is conceptualized as a single complex system, with the roles of humans
and software/hardware components designed together. Under this approach, a
top-down functional analysis for the entire ship is performed, and then design
options with different allocations among hardware, software and human
operators are compared and evaluated. Often this involves task-centered design,
in which decisions about the design of subsystems, and about human and
machine roles and the human-machine interface, are made with reference to the
tasks that must be performed by the person and person-machine combination.
Total system design and task-centered design both work within the overall
framework pictured in Fig. 1 above, but represent customizations needed to
appropriately factor in the design of human work and roles.

Human Models to Support Design Analysis

Human models can be used in the system design process in all three of the
stages shown on the right-hand side of Fig. 1, primarily as a means of analyzing
the design products on the left-hand side of the figure  – system requirements,
system logical designs, and system implementation designs. The analysis of
requirements involves testing the ‘why’ decisions in the design process, the
analysis of logical designs involves testing the ’what’ decisions embedded in
the iterative design, and the analysis of implementation designs involves testing
of the ‘how’ decisions contained in engineering design.

Historically, the major use of human models has been in the later phases (e.g.
Gray, John & Atwood, 1993), but there is a great potential payoff from their use
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in earlier design phases because they have the greatest impact on the system’s
likelihood of success and its life-cycle costs. The potential uses of human
models in the first two design phases are discussed below together, after which
the use in the last design phase is discussed.

Requirements and Logical Design Analysis
These early design phases answer such questions as “What functions will the
system be able to perform” and “What general classes of components will be
involved in performing these functions”? There are at least four ways in which
human models might support these early stages of analysis with current or
near-term technology.

The first is identifying stress points and opportunities. Human models can be
used to find points in the predecessor system (i.e. the system that the new
system will be replacing or supplementing) that are prone to stress or are
underutilized. These points provide opportunities for improvement; for
example, underutilized human operators could point to requirements for job
consolidation opportunities and overloaded human operators could point to
requirements for a need for automation. The second use is in identifying
organizational requirements. For example, through models, limits on team size
and structure can be developed, based upon the need for speed in complex
decision making. A third use is in life cycle cost estimation. Human models can
be used to develop estimates of the costs of various design requirements and
concepts, e.g. the costs of various manpower alternatives. The fourth high-
payoff use is in performance budgeting, that is, in using human models to
allocate performance requirements to functions and, ultimately, components in
a way that achieves overall system performance requirements. For example,
this could be used during initial function allocation exploration to assess where
the expected functional requirements can be met by each component.

Table 4 presents a summary of the different kinds of human models and
modeling techniques that could be used for each of these four types of concept
and requirement analyses. In this and similar tables below, the reader is advised
the mapping is suggestive only. That is, the authors are aware of applications
of this type or believe that applications of that type are possible.

The Use of Human Performance Models to Validate and Evaluate
Engineering Designs
In Fig. 1 above, there is a natural flow in the design capture/synthesis process
from the ‘what’ stage, where the establishment of requirements is the main
issue, to the ‘how’ stage, where a determination of how the system will achieve
these functions becomes the primary concern. But there is a reverse flow as
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Table 4. Models Applicable to Concept and Requirements Analysis.

Model Class Identify Stress Points
and Opportunities

Organizational
Design

Life Cycle Cost
Estimation

Performance
Budgeting

Closed form models X
Computational cognitive models X X
Critical decision analysis X
Decision theory models X
Finite state models X
GOMS X
Group training models X X
Human reliability analysis (HRA) X
Link models of anthropometry & movement X
Network models X
Optimal control models X
Perceptual models X
Recognition Primed Decision Making (RPD) X
Signal Detection Theory
Task hierarchies X
Task network X X
Training taxonomy X
Workload X

Modeling Technique
Knowledge Representation
Decision-making & Reasoning
Design/Analysis Techniques X X X
Natural Language Processing Techniques
General Purpose Simulation X X X 225
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well. For example, if during detailed design it becomes apparent that a
requirement cannot be met or can easily be exceeded, then the requirement may
change. It is largely models (on the analysis/simulation side of Fig. 1) that can
be used to play “what if . . .”. with a candidate design or operational concepts.
The design engineer can use human performance models to determine whether
requirements can or cannot be met.

In defining how human models could be used in detailed design validation,
it is necessary to consider the kinds of information that would flow between the
stages of the design process. Inherent in the idea of evaluating a design is the
idea that it must be evaluated against some ‘target’, such as a performance
standard or benchmark. Ideally, such standards and benchmarks should be
created during concept validation (although the specific requirements could
change during design iterations). While the whole system concept may include
many benchmarks and data for system validation, those that are particularly
relevant to the application of human models include: 

• Lists of functions to be accomplished,
• Function allocations (to the extent that they have been allocated at any phase

of design),
• Function level performance requirements (time, accuracy, risk),
• Manpower constraints,
• Personnel characteristic constraints, and
• Training constraints.

The function lists and performance requirements are not exclusively human
functions at early phases of design when the allocation of functions among
humans, hardware and software, (and even dynamic function allocation) is
being considered. Indeed, much of the value of human performance models
will be in assisting the tradeoffs of function allocation at all levels of design.

Also, in order to evaluate a design with respect to humans in the system, its
constraints on the human subsystem must be known. These include manpower
constraints (i.e. how many people), personnel characteristic constraints (i.e.
what kind of people), and training constraints (i.e. how much time and
resources will be available to provide the humans with the necessary skills for
safe and successful system operation).

Without defining such constraints, it is impossible to reasonably validate or
evaluate a design. For example, a system design might meet the manpower and
personnel constraints, but it might take many years of training for the personnel
to achieve the required level of performance. Therefore, all of these constraints
must be defined before detailed engineering design begins.
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Human models can have many uses in validation/evaluation of detailed
system or component designs, such as:

• Predicting performance time,
• Predicting performance accuracy (e.g. error rates,% deviations),
• Predicting risk (e.g. probability of achieving function success),
• Predicting the satisfaction of anthropometric limitations,
• Predicting communication requirements/success,
• Predicting training requirements, and
• Integrating human performance predictions with other system performance

models for integrated systems analysis.

Table 5 summarizes the models and modeling techniques that are applicable to
each of these seven areas. It should be noted, however, that there are significant
limitations in the capabilities of today’s models in many or most of the boxes
in Table 5. For example, in predicting and validating a design with respect to
accuracy, there are many aspects of system accuracy that might need to be
modeled, but only some can be effectively predicted using current human
modeling technology.

Human Models to Support Design Synthesis

It is easy to envision the role that human performance models could play in
supporting design analysis activities, as engineers and designers have been
using models of hardware and software to do simulation-based system analysis
for years. Design synthesis, however, includes what is often conceptualized as
a creative component, and the application of human performance modeling
techniques to support these types of activities is less intuitive.

The total-system and task-centered design views, as described above, can be
used to help frame the kind of design tools that are needed to support the design
process. For example, to support task-centered design, tools are needed to help
identify team/organizational structures that match task requirements. An effort
to develop such a tool is currently underway, supported by the Navy. Paley and
colleagues (Paley, Levchuk, Serfaty & MacMillan, 1999) are developing a
design tool (the Team Integrated Design Environment, or TIDE) that facilitates
the application of a mission-based organizational design methodology. The first
stage in following this methodology is to apply a multi-dimensional
decomposition procedure to a particular mission, and determine the mission
tasks and their interdependencies and relative sequencing. This mission
structure can be represented in a series of mission task dependency graphs. This
mission structure provides one of the two main inputs to the modeling tool. The
other main input is a set of “organizational constraints”, which include the
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Table 5. Models Applicable to Analysis During Detailed Design.

Human Performance Model Class Time Accuracy Risk Anthropometric Communication Training Integration

Closed form component models (e.g. Fitts’ Law) X X
Computational cognitive models X X X X X
Critical decision models X X X
Decision theory models X
Finite state models X X X
GOMS X X
Group Training Model X
Human Reliability Analysis (HRA) X X
Link Models of anthropometry movement X
Network models X
Optimal Control Models X X
Perceptual Models X X
Recognition Primed Decision Making (RPD) X
Signal Detection Theory X
Task hierarchies X X X
Task Network X X X X
Training Taxonomy X
Workload X X

Modeling Technique
Knowledge Representation X X
Decision-making & Reasoning X X X
Design/Analysis Techniques X X X X X X
Natural Language Processing Techniques X
General Purpose Simulation X X X X X
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resources and technologies available to support the human team members in
accomplishing the mission. Given these two inputs, the modeling tool follows
a three-part allocation algorithm to produce a team structure that is optimized
to perform the mission. The tool produces an optimized structure by modeling
organizational performance criteria as a multi-variable objective function, and
then using advanced mathematical techniques to optimize that function. Of
course, as with all design activities, this tool should be used in an iterative
fashion, with multiple checks being performed on its output and the results of
those checks fed back into the front end definition and analysis of the mission.
While the software tool itself is still being developed, the underlying
algorithms are already being successfully applied in several military domains.

To further support total-system and task-centered design, other tools are
needed to analyze and determine when tasks and functions should be
automated (replacing the human) versus when they should be supported by
aiding-automation (keeping the person involved in the task). Issues such as
determining effective task allocation, the impact of automation on human
performance and the design of human-machine interfaces are addressed by
practitioners in the field of Human Factors. In another Navy sponsored project,
Eilbert and colleagues (Eilbert, Campbell, Santoro, Amerson & Cannon-
Bowers, 1998) are currently using a cognitive computational modeling
technology to capture some of the knowledge and reasoning capabilities of
human factors engineers, in order to develop a design decision aid. (There is
more discussion on the use of models to build decision aids, below.) The
modeling framework chosen, COGNET, uses a combination of software
components, including demons representing perceptual processes, a blackboard
structure holding declarative knowledge, and GOMS-like rules capturing
procedural knowledge, to simulate the opportunistic (or context sensitive)
reasoning of a human expert in a limited domain. Once complete, the model
will be used during design, not to replace human factors engineers, but rather
to identify and draw to the attention of the system and design engineers the
human factors issues, problems and analyses that need to be addressed. If this
decision aid can increase the awareness of the existence and importance of
human factors issues throughout the design of a complex system, then,
hopefully, the human factors engineers will be given a larger role in supporting
the design process. 

Human Models and Human Experimentation

Traditionally, human issues in system design have been resolved, where
possible, by experimentation with human subjects interacting with prototypes
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or mockups or simulations of the system under design. The maturity and
availability of human models will affect this practice. However, rather than
reflecting an either/or relationship, these two approaches should be seen as
having a complementary relationship.  Figure 2 shows the roles that either
human modeling or human-in-the-loop testing may play in validating either
system requirements or design details.

The need for synergy between experimentation and modeling is perhaps
even more important for human system components than elsewhere (e.g.
hardware models) since the high degree of variability in human components of
the system make them inherently less predictable. At the same time, the lower
cost and logistical simplicity of models allows them to help focus the collection
of empirical human performance data. A particularly important area in which
this focusing could occur is risk mitigation. Models could be used effectively
to focus the human-in-the-loop studies in the areas of design and operation that
pose the greatest risk. Conversely, the human-in-the-loop studies could provide
important calibration data for the human models, to enhance their predictive
power and even to assess the validity of the models. This set of relationships is
shown in Fig. 3.

Another linkage between model-based validation and human-in-the-loop
testing is that the effectiveness of both techniques depends on the appropriate
development and use of design basis scenarios in the validation process (a
concept borrowed from the nuclear power industry). A design basis scenario is
a scenario that taxes the system-under-design to the limits of its expected
ability to be able to perform. Typically, several design basis scenarios are
developed that push the system in different ways. To evaluate human/system
performance and know when the human and system are performing acceptably,

Fig. 2. Uses of Human Performance Models in Systems Validation.
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there must be some human-focused design basis scenarios against which to
test. Such scenarios will serve as the basis for model development and the
conduct of human-in-the-loop experimentation.

General Issues Regarding Human Modeling Techniques to Support System
Design

Regardless of whether human modeling techniques are being applied to support
design synthesis or design analysis, there are three general issues that must be
addressed: the level of design detail required for the application; the usability
and interoperability of the modeling tool; and the maturity of the modeling
technique. Each is further discussed below.

Many, if not all, variations of design process frameworks emphasize the
iterative nature of design, in which design details slowly emerge over time.
This can lead to a concern of when there is sufficient detail to begin applying
human models. For example, is it necessary to know how many missiles a
hypothetical person might be coordinating before that person/role can be
modeled? Or how long it takes one missile to go from warm-up to detonate?
The NYNEX corporation’s experience in applying models to assess a new
operator workstation design is illustrative here. Gray, John & Atwood (1993)
were able to build the detailed GOMS models used in the evaluation of a new
workstation only after the design was fully specified. Unfortunately, in the
complex-systems acquisition process (particularly as practiced by DoD), once
design details are specified, it is essentially too late to make changes if the

Fig. 3. Relationship between Human Performance Models and Man-in-the-Loop
Studies.
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modeling suggests that the design is sub-optimal. However, even though most
of the historical use of human performance models in design has focused on
human-computer interface issues, this does not have to be the case. For
example, work is currently in process (Kirschenbaum, Gray & Ehret, 1997;
Ehret, Kirschenbaum & Gray, 1998) to use models of command decision-
making in submarine attack center design. What is useful in this case is
modeling the decision-maker’s information seeking strategies and behavior at
a high level, not the details of how they actually get that information through
the HCI of their workstations.

In fact, the human factors community argues strongly that human
engineering must be done early and often during the design process, and that
modeling can be useful before the implementation details of a design are
determined. Fortunately, systems engineers are comfortable using high-level
models of hardware and software (with the associated level of approximation
in those models’ outputs) early in the design process. But the questions of: (1)
how one can build human performance models before detailed system design
has begun, (2) how one can estimate the amount of imprecision in those
models, and (3) the degree to which different modeling techniques are
amenable to supporting high level models, are still somewhat open and
debatable, making this an important area for further investigation.

It is also important to consider the potential impact (or lack thereof) of
providing human performance models and modeling tools to systems
engineers. It is unrealistic to expect to turn system engineers into human
engineers simply by handing them a modeling tool. Ideally, a good tool will
help in simple, straightforward cases, but in complex situations the support of
a human factors engineer or human modeling specialist will likely be needed.
In addition, the adoption of human-modeling tools will ultimately require use
of a broader (human engineering) design process.

Interestingly enough, the degree of tool and model maturity needed before
the tool/method becomes useful is, in fact, a variable. Returning to the NYNEX
example, when Gray and John (1993) applied GOMS at NYNEX, the model
was not developed as a part of a mature technology, yet the model nonetheless
proved very useful (although it was highly sophisticated users – Psychology
PhDs – who applied the technique). In general, a still-research-level model or
tool can be made useful if the consumer organization has the commitment and
willingness to put time and money into the process; typically this only happens
if the problem involved is big and perceived as important. For the myriad of
small, mundane problems, though, special resources will typically not be
available, so highly mature and usable tools will be needed.
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Finally, any human performance modeling tool must conform to the same
rules as any other design tool. For example, if different human-model-based
tools are required or recommended, then the tools should all be able to work
from common inputs, so that the design at any particular level has to be
captured only once. Designs captured at different levels of detail must also be
traceable to one another. Modeling will have to prove more cost effective than
prototyping combined with human-in-the-loop studies, and should enable more
design options to be considered. Ultimately, the key to acceptance is the ability
to assess operability and relate operability to cost. Model-based approaches and
tools must be able to demonstrate that doing the additional analyses required by
model-based approaches can significantly increase our ability to produce long
run cost savings. And, of course, the tools themselves should be usable and well
human-factored.

USING HUMAN MODELS IN SYSTEM OPERATION

The applications of models of human capabilities are not limited to the design
and engineering of complex systems. It is also increasingly possible to embed
cognitive and other human models in components of complex systems and use
those models to support the operation of those systems. Another way to view
this is as using the models as part of the implementation of the system, rather
than as part of the design, as considered in the previous section. Following the
approach of the design discussion above, the various functional ways in which
human models could be used in system operation are first reviewed, and the
current technology base from Table 1 is then mapped into the functional
application areas. 

The use of cognitive (or other human) models in system operation places a
unique constraint on the development of a model that is not necessarily present
when these models are being applied to system design. This is the constraint of
embeddability. Applying a model in system operation implies that the model
must exist in some form that is embeddable directly into the system itself.
Purely analytical representations in prose or other non-executable formalisms
may be used to inform the design process and may suggest specific features of
the system being designed, but such representations cannot be actually
embedded in the system itself.

The embeddability of a model implies some aspect of executability, but that
executability can take many forms. The model can represent the internal
processes of the human (for example, allowing the system to gain insights into
human goals and intentions), or it could merely represent behavior (for
example, manipulating a watchstation in a human-like manner). The model can
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deal with process, representing the internal steps in a decision or analysis
process, or merely represent the outcomes via input-output relationships, but
the constraint of embeddability still remains. Within this bounded definition of
human model, ten functional applications to system operation, and the specific
capability requirements associated with each application, can be defined. 

(1) Information access, retrieval, and integration. In this application, the
model is used to automate or replace human roles in gathering
information and integrating it for use by human crew-members or other
automated systems. Information access problems fall along a dimension
that ranges from closed ended, in which the information to be retrieved is
precisely defined from the problem conditions, to open-ended, in which
defining the information to be sought and integrating partial pieces into a
whole solution are part of the problem. Clearly, relatively simple human
models can address closed-ended problems, while more open-ended
problems would require more robust models that contain substantial
knowledge and problem-solving capabilities.

(2) Performance monitoring and assessment of human operators. A model
of normative or expected human performance can be used to monitor
human crewmember’s performance for adverse effects (e.g. of fatigue,
extreme environmental condition, etc.) or other kinds of impairment, or it
can be used to provide dynamic performance assessment of the human
crewmembers for evaluation purposes, to identify training needs, etc. The
relevant dimension for assessing the applicability of human models is the
aspect of human performance that is being monitored or assessed. At one
end is a purely behavioral monitoring/assessment (focusing on what  the
person is doing), and at the other end is a knowledge-oriented monitoring/
assessment (focusing on what the person knows). Here again, different
models are needed for different points on this dimension, depending on
their focus on cognition, behavior or both.

(3) Real-time decision support. Cognitive or decision models, typically
encapsulating the strategy or knowledge of experts, can be used to aid the
decision process or decision making of human crewmembers. This is the
most commonly found application of embedded human models today.
Based on the large amount of experience in this area, it does not appear
that there are any inherent limits.

(4) Associates. A model or combination of models can be used to provide a
digital assistant or one-on-one associate for a specific human crewmem-
ber (often in a senior or decision-making role). These associates can be
used to off-load work in an on-demand basis, to support and simplify the
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human-computer interaction with the watchstation, and/or to carry out
other tasks when directed by the human being assisted. Operator
associates is an area where substantial research has been invested to date
(esp. DARPA associate systems programs), although much of the research
has focused on technologies other than human models. The key constraint
here is on the robustness of the associate, which must be able not only to
perform many of the tasks assigned to the human, but also must be able
to interact with the person in an intelligent and cooperative manner.

(5) Embedded intelligent training. Models of experts or instructors can be
used to provide critiques of trainee actions, to define dynamically the
correct or desired actions in training scenarios, and to specify the kinds of
knowledge needed (or evidently lacking) for specific actions taken by
trainees. The key distinction here is whether the training is knowledge
based or performance based (or both). When only (behavioral) perform-
ance is being trained, then models that predict performance alone can be
used. However when the goal is to diagnose the knowledge strengths/
weaknesses of the trainee and focus instruction on those areas (rather than
just on behavior), then models that represent knowledge and internal
reasoning processes are needed.

(6) Cooperation and collaboration support. Models of team level processes
and organizational work can be used to enhance, structure, and support
collaboration and cooperation among teams of human crewmembers, for
example by making sure that all required work gets done (i.e. nothing
‘slips through the cracks’) or that redundant work efforts are not being
undertaken needlessly. The key dimension for assessing the applicability
of human modeling technology here is the breadth of the cooperation. At
one end is simple dyadic (one-on-one) collaboration, in which all work
must be accomplished by that two-person team. At the other end are large
organizations, in which there are many levels of restrictions concerning
who can work with whom, information flows, etc. Nearer to the
organizational end, models that deal with organization structures and
processes (rather than individuals and roles) are needed, while nearer to
the dyadic end, models that explicitly deal with individual responsibilities
and characteristics are needed.

(7) Dynamic role/function allocation. Models of individual workload and
organizational/team requirements can be used to re-allocate functions and
roles (either among people on a team or between people and automation)
to level workload and avoid performance bottlenecks due to overload of
some (human or machine) parts of the system. Given that this definition
is based on workload management, it is critical that models used be able
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to assess the residual work capability of the human and machine agents
involved. This assessment can occur either explicitly (e.g. through use of
explicit workload models) or implicitly through a variety of other
mechanisms. A secondary dimension of concern here is the ability to
assess which agents are capable of performing specific functions that are
candidates for re-allocation. Although lacking this facility, the dynamic
reallocation process can be explicitly restricted to those functions that can
be freely re-allocated to any agent within the team.

(8) Task management. Models of the flow of work (e.g. the flow of tasks or
jobs needed to accomplish some key system-level goal) can be used to
manage the efficient performance of the work under dynamic conditions,
by reallocating functions, tasks, even whole human roles, as needed to get
the job done. Task management differs from dynamic function allocation
in that the latter, as defined here, is driven by individual workload issues
(and is thus person-focused), while the former, as defined here, is driven
by workflow issues, and is thus task focused. The considerations for task
management are very similar to those for dynamic reallocation, with one
exception. A task manager must still represent the workload and task-
specific abilities of the agents (individuals or people) within its purview.
However, because the task management process, as defined above, is task-
flow oriented, models that can support this functional application must
also have some explicit ability to represent and track the performance of
tasks within an overall job-flow.

(9) Task automation. Models of human crewmembers that are sufficiently
robust that they can perform tasks at approximately the same level (or
perhaps even greater) than a human can be used as intelligent automation
to replace humans for specific tasks or roles. There are relatively few
restrictions on the use of models for task automation. Because task
automation explicitly focuses on task performance (i.e. behavior), any
model that can produce realistic and robust behavior is potentially
applicable. In some cases, though, the ability to communicate about task
performance may be required as well, and this would require use of
models that can engage in explanation and inter-agent communication.

(10) Knowledge management and transfer. Finally, models can be used to act
as acquirers and keepers of “corporate knowledge” and to disseminate or
provide access to this corporate knowledge when needed. This emerging
area is the least well-defined. The only clear constraint is that a model or
modeling technique used for this function must have a clear and explicit
representation of knowledge.
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Given the requirements of the various applications delineated above, only
certain modeling categories and techniques are appropriate for each applica-
tion. The assessments are summarized in Tables 6 and 7. Table 6 focuses on
specific human model types, while Table 7 focuses on more general modeling
techniques.

CONCLUSIONS

This chapter has presented an assessment of the ways in which cognitive
modeling and other related human modeling technologies could be used in the
design, evaluation and operation of complex systems. Specifically, it has tried
to delineate and characterize the short term opportunities for human model
application in complex system engineering efforts, and to identify areas where
additional research and development investment are needed and can lead to
high-value applications in the future. Each of these goals is addressed below.

A commonly used metaphor is that of “low hanging fruit”, and this chapter
tried to characterize the short-term application opportunities of human
performance modeling technologies. Table 8 below summarizes these results.
Using the taxonomy from Table 1, it reviews those techniques identified as
ready for immediate or short-term application in each of the three areas of
concern: system design, system operation, and concept and design evaluation.
In addition, the current validation status of these techniques is also included.

Beyond the short-term applications, potential areas for high payoff research
and development are also interesting. Many specific research needs and
opportunities can be identified and classified into five general areas: cognition,
knowledge management, team and organizational structure and processes,
predictive models of training, and human-centered systems engineering. Each
of these is further discussed below.

Research Need No. 1: Advanced Capability to Model Cognitive Processes
Research into cognition and development of models of cognition has led to
many of the specific human models listed in Table 8. However, there are several
areas where additional research support is needed before the technology can be
applied to complex systems. These areas include:

(1) Modeling human reading and understanding graphic-based displays. The
range of design options available today and in the future includes a
dizzying array of interface technologies. Current cognitive models (even
the cognitive modeling technologies that were developed for the purpose of
human-computer interface evaluation) do not provide the ability to
differentiate (in a predictive sense) human responses or performance across
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Table 6. Models Applicable to System Operation Applications.

Model Type Inf. Access,
Retrieval,
& Integration

Performance
Assessment

Decision
Support

Associates Embedded
Intelligent
Training

Cooperation/
Collaboration
Support

Dynamic
Function
Allocation

Task
Management

Task
Automation

Knowledge
Management

Closed Form Component
Models (E. G., Fitts’ Law)

X

Computational Cognitive
Models

X X X X X X* X X X X

Critical Decision Models X
Decision Theory Models X
Finite State Models X X X X X X X X
GOMS X
Group Training Models
Human Reliability
Analysis (HRA)

X X

Network Models X
Optimal Control Models X X
Perceptual Models X
Recognition Primed
Decision-Making

X

Signal Detection
Theory

X

Task Hierarchies
Task Network X X X X X X X X X X
Training Taxonomy
Workload X X

* If expanded to include cooperative issues.
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Table 6. Modeling Techniques Applicable to System Operation Applications.

Model Type Inf. Access,
Retrieval,
& Integration

Performance
Assessment

Decision
Support

Associates Embedded
Intelligent
Training

Cooperation/
Collaboration
Support

Dynamic
Function
Allocation

Task
Management

Task
Automation

Knowledge
Management

Blackboards X X X X X* X X X
Production Rules X X X X X X X
Semantic Nets X X X X* X
Bayesian Inference X X X X X
Fuzzy Logic X X X X
Hybrid Logic X X
Neural Nets X X X X X
Hidden Markov Models X X
Case-Based Reasoning X X X X X X X
Early Comparability Analysis
Simulation-Based Tutoring & Authoring X
Simulation-Based Walk-Through
Statistical Models (Descriptive) X X X
Statistical Models (Interpretive)
Natural Language Processing X X X X X X X X X X
Monte-Carlo Methods X X
Dynamical Models X

* By sharing the model across individuals.
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these kinds of design alternatives, and thus cannot support the kinds of
design decisions that must be made.

(2) Extending computational cognitive architectures to provide collaborative
support. Current computational architectures lack the capabilities to
model social/organizational cognition, metacognition, and discourse that
are needed in truly collaborative work. These architectures need to be
extended to include such capabilities so that models can be used in system

Table 8. Near-Term Application Opportunities for Human Models.

Model Class Design Operations Concept &
Design
Evaluation

Validation status (1)

Closed Form Component X X face, construct,
predictive

Computational Cognitive Models X X X face, construct,
predictive

Critical Decision Models X X face
Decision Theory Models X face, construct,

predictive
Finite State Models X
GOMS X X face, construct,

predictive
Group Training Models face
Human Reliability Analysis (HRA) X face, construct
Link Models Of Anthropometry
& Mvmt 

X face, construct,
predictive

Network Models X n/a
Optimal Control Models X X face, construct,

predictive
Perceptual Models X face, construct,

predictive
Recognition Primed Decision-
Making (RPD)

face, construct,
predictive

Signal Detection Theory face, construct,
predictive

Task Hierarchies face
Task Network X X X face, construct,

predictive
Training Taxonomy X face
Workload X face, construct,

predictive
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operation as workflow managers or as surrogate team-members, capable of
adapting to changing team circumstances as human team members would.

(3) Cognitive models of leadership. Current cognitive models focus on task
performance and decision making, yet leadership remains a key element of
military, and indeed of all complex systems. The role of leadership in
complex systems can not currently be modeled, and can not therefore be
factored into system design or validation in a model-based way.

Research Need No. 2: Advanced Capability to Model Knowledge
Management
Knowledge management is rapidly emerging as a key area in the engineering
of manned systems, both commercial and military (e.g. Nonaka & Takeuchi,
1995). As an emerging area it is less well defined than cognitive modeling, but
there are two areas where research needs can be identified:

(1) Knowledge representation for engineering use. Human factors engineers
and systems engineers need access to the existing knowledge of complex
system users to support future design, implementation, and evaluation
activities. Techniques for representing specific kinds of human knowledge
have been developed by cognitive researchers, but these methods were
either oriented toward specific application frameworks (such as computa-
tional cognitive models) or for research and/or theoretical purposes.
Research is needed to identify and implement methods and tools to make
the existing (and future) knowledge representation schemes accessible to
the system engineering process.

(2) Knowledge growth/transfer. Most knowledge representation methods and
knowledge acquisition schemes treat knowledge as a static set of objects,
to be captured and represented once. In reality, though, the knowledge of
an individual or team is constantly changing. Some changes are the result
of learning, and others are the result of environmental changes that cause
some previously used elements of knowledge to become less useful (or
even useless) and other elements to become more important. Organiza-
tional processes and system evolutions also constantly contribute to this
process. Research is needed into means of capturing and representing these
dynamic aspects of an individual or organizational knowledge base.

Research Need No. 3: Advanced Capability to Model Teams
Team/organizational research is also seriously needed in several areas. While
much of the human modeling technology base developed with an individual-
level focus (perhaps because of its roots in psychology), applications tend to
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revolve around designing and operating complex systems, for which key
human behaviors frequently occur in team or organizational contexts. Three
general areas can be singled out:

(1) Team/organizational level modeling for cooperation/collaboration sup-
port. Particularly in reduced manning systems, human teams must work
together more effectively and efficiently. There will be little workload slack
built into these systems, so the teams will have to collaborate more
effectively, and in a much more complex and fluid environment than today,
one in which roles, tasks, and even interfaces are dynamic and re-allocable.
Surprisingly, there is relatively little useful research or (ideally) models
concerning how teams collaborate (particularly at the cognitive level) that
can be used to guide or even inform the design of collaborative
environments or of automated tools such as task managers to support
collaboration.

(2) Team leadership. Leadership is key to effective team performance, yet
there are virtually no models of the leadership process, particularly in
complex dynamic environments as envisioned, for example, in the future
Navy ships. Models of team leadership are needed both to design and
evaluate these systems.

(3) Team level processes and training. Cognitive research has produced useful
models and architectures of individual level information processes and
training. The team level analogs of these do not yet exist. Thus, the system
designer has no clear reference points on the key limitations (e.g.
analogous to short-term memory limits or cognitive biases) or important
features in team level processes, particularly those of collaborative task
performance and team training, making the design of work teams highly
unstructured and subjective.

Research Need No. 4: Advanced Capability to Support Training Analyses
Through Modeling
Several issues in the domain of training are also good candidates for future
research. These concern not specific training methods or systems, but research
into the training process itself so that training needs and costs could be better
predicted during the system design and evaluation process. Specific modeling
needs include:

(1) Group training models. Development of models of the processes by which
groups or teams are trained, in terms of the underlying parameters and
dependent variables such as time, cost, and effectiveness.
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(2) Training taxonomy for cost. Research to map taxonomies of training
techniques or training requirements (e.g. a skill taxonomy) into cost
predictions, so that even at very early design stages, training options and
cost could be estimated.

Research Need No. 5: Advanced Capability to Build Reusable, Interoperable
Models
One final set of issues for future research concerns not human models per se,
but the ways in which they mesh with the complex system engineering process.
In many cases, these are issues associated with the transition of human
modeling from a research to an engineering activity. They represent truly
interdisciplinary applied research needs, and as such can easily fall into the
cracks in the research funding process. However, they also represent critical
problems that must be solved if the basic and exploratory research into model
development is to be productively integrated into the system development
process:

(1) Model insertion. Human models represent a new kind of tool for the
systems engineering process. Even revolutionary systems such as the
future Navy ships will be largely composed of legacy components, for
which there are no human models, or at least for which no human models
have been incorporated into the design/implementation/evaluation process.
It is not clear how human models should be inserted into the life cycle of
complex systems, nor what engineering and cultural issues associated with
this insertion will arise.

(2) Model integration. Different human models must be able to be integrated
with one another, and with the other models and tools used in the system
development life cycle. This concern was echoed in the National Research
Council report as well (Pew & Mavor, 1998). Research is needed to
identify integration frameworks, to develop standards, and even to create
integration support tools.

(3) Reusable taxonomies/task description. The lexicon of knowledge and
human activities has never been standardized, or even cross-mapped
among the many idiosyncratic frameworks used by different researchers or
groups. Practitioners and appliers of this technology who are not
researchers will need a taxonomy or reusable set of definitions and
descriptions that they can use to identify and apply the appropriate human
models. Research is needed either to standardize descriptions for concepts
like task descriptions or taxonomies, or, where they do not exist, to create
them. (One possible model for this process is the research to create a
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unified medical terminology system that integrates and cross-maps the
individual vocabularies among the many specialties of medicine.)

(4) Tools to “bridge the gap” between system engineering functional
decomposition tools and human-centered representations. The tools of
system engineering do not represent or decompose either structures or
processes in the same way as human modeling methods such as task
networks, computational cognitive models, etc. If the human models are to
become part of the process, they will need to communicate with the
existing system engineering decompositions, or make use of some higher-
level framework that encompasses both needs. Without such a framework
or translator, the cost of developing and managing dual decompositions for
system and human modeling will prove too great a barrier.

(5) Representation and modeling the evolvability/maintainability of systems &
jobs. Just as with knowledge, the jobs humans perform and the systems
with which they perform them are constantly evolving, particularly during
the post-deployment phase of the system life-cycle (which includes most of
the life cycle, as well as most of the life-cycle costs). As the jobs and
systems change, the design-phase analyses and models become increas-
ingly irrelevant. Research is needed to find ways to incorporate this
evolutionary aspect into the design phase models, and into the process of
job/system evolution itself.

Of course, further follow-up is needed by design teams to make use of the
available technology, and by the broader research organizations to fill the
research gaps identified here. This is an exciting time for researchers and
practitioners alike, as human modeling technology has now reached a state of
maturity where it has proven itself able to become a contributing component to
the design, evaluation and operation of complex systems.

NOTES

1. Many of the ideas contained in this paper originally arose from a three-day
workshop on Cognitive Models in Complex Systems, sponsored by the Office of Naval
Research and the U.S. Naval Air Warfare Center Training Systems Division. The
authors express their gratitude to the sponsors of the workshop, and to the 45
researchers, engineers, and domain experts who contributed to the workshop.  The
authors also gratefully acknowledge the suggestions of Kevin Bracken on earlier drafts
of this paper, as well as the contribution of Christine Volk in preparation of the
manuscript.

2. The research into the “informant accuracy” problem is summarized in Bernard,
Killworth, Kronenfeld and Sailer (1984).
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3. Thus, the concepts of individual/network are maintained from the micro approach,
but the use of organization-wide dynamics and the simplification of individual
representations is retained from the macro approach.
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